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A Finite-Difference Frequency-Domain Method that
Introduces Condensed Nodes and Image Principle

Messan M. Afande, Ke Wu, Senior Member, IEEE, Marcel Giroux,
and Renato G. Bosisio, Senior Member, IEEE

Abstract— A new finite-difference frequency-domain formula-
tion is derived from the integral form of Maxwell’s equations.
Condensed cubic cell and 3D node are proposed thereby elim-
inating field discontinuity in the discrete space domain. Deter-
ministic solutions using a reduced 2D condensed node are also
presented for standard eigenvalue problems. This method is
free from spurious modes by reinforcing electric and magnetic
flux conservation among neighboring cells. An image concept
is introduced to model field boundaries. Numerical results are
presented for the complex propagation constant to demonstrate
convergence behavior and accuracy of the proposed approach.
Modal field profiles of various guided modes are shown for
dielectric waveguides.

1. INTRODUCTION

AVEGUIDING structures have been always essential
Win microwave and optical components as well as power
transfer for heating processes. Accurate analyses of these com-
plex structures usually require field-theoretical and numerical
methods in either frequency or time domain [1].

The finite-difference time-domain method (FDTD) [2]-[8],
based on the differential form of Maxwell’s equations in time
domain, has been intensively used to study various types
of waveguiding structures. Also. the TLM method [9]-[12]
has been developed in both time and frequency domains.
Time-domain methods are implemented in an iterative process
following the time evolution, initiated via an excitation vector.

Frequency-domain analysis remains attractive due to the
fact that boundary conditions are easily handled accurately,
and accurate hybrid mode information can be determined
without resort to expensive calculations. Nevertheless, some
frequency-domain methods such as mode-matching method
[13] and method of lines [20] suffer from an iterative search for
roots of the characteristic determinant. The application of these
approaches requires some degree of symmetry or regularity
of structure. The finite-difference frequency-domain (FDFD)
method, being simple in mesh generation, has been devel-
oped in various forms including Maxwell’s integral equations
[14]-[19] for deterministic solutions.

Previous works on the FDTD method [2]-[7] and the FDFD
method [19] are based on Yee’s cell (Fig. 1(a)) characterized
by spatially separated six field components. This artificial
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Fig. 1. (a) Yee’s cell. (b) Condensed cell.

space-domain field discontinuity may lead to errors at bound-
aries and interfaces. This may also affect numerical accuracy
and causes difficulty in handling multilayer structure in which
the thickness ratio could be significant. To our knowledge,
there is no report of a condensed finite-difference node derived
directly in frequency domain.

In this work, unified 3D and 2D condensed nodes are
derived from the integral form of Maxwell’s equations. A
condensed cell is considered leading to a better representation
of field parameters such as Poynting vector. Electric and
magnetic flux conservation between neighboring cells are
imposed to eliminate spurious modes. In contrast to the
conventional way in handling boundary conditions, an image
concept is proposed to model boundaries and is successfully
used in this work. In addition, this concept leads to the
avoidance of dealing directly with edge singularities since
field components are not considered on the boundaries. The
duality principle can be easily applied to deduce directly F
field condensed node’s expressions by knowing those of H
field condensed node, and vice versa. An eigenvalue problem
is then derived by expressing the interaction between all nodes
involving the whole structure and the boundaries. Propagation
characteristics and modal field profiles are obtained determin-
istically. Numerical results are presented, thus demonstrating
the efficiency of the proposed condensed node.

0018-9480/95$04.00 © 1995 IEEE
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II. THEORY

The integral form of Maxwell’s equations (la)-(1d) in
source-free region is considered. The permittivity & and the
permeability ¢ are complex to account for electric and mag-
netic dynamic losses as well as electric static losses.

]fE” df:—//jwuH ds (12)
fﬁdl://jweiz.ds (1b)
faﬁ d3=0 (1c)
%ﬂﬁ d3=0 (1d)

with

el ()]
g=¢gqgle —gg + | = = gg&r
Jweg

p= po(p' — ju").

The condensed cell (Fig. 1(b)), associated with a discrete
point 5k, is characterized by the six field components (£,
Eyi]ka Ezijk7 Hmjk, Hyijk, Hzijk)a the medium constitutive
parameters (er;jk, phrijr) and the mesh grid (Az;jr, Ayijk,
Azijk).

The condensed node is derived in two steps. At first,
relations (1a) and (1b) are used to express the field interaction
between the condensed cell at point ¢jk and its neighboring
cells. The discretization scheme is shown in Fig. 2 for £, ,;,
field component at discrete point ijk; discretization scheme
for H;;;, field component is directly deduced from Fig. 2
by substituting & and [ with H and E, respectively. In
the following, similar schemes for other field components
can be simply deduced by performing an appropriate rota-
tion of the principal axis. To improve the accuracy of the
proposed algorithm, a discretization scheme similar to the
central difference is used by extending the tangential electric
or magnetic field and the normal electric or magnetic flux
density to the immediate interconnected cells. This is done
by applying continuity conditions of the tangential electric
or magnetic field and the normal electric or magnetic flux
density at a source free interface. Six coupled equations are
then obtained in matrix form as follows:

= jwpo[CHlijnHiji
= [EIM](iwl)jkE(i—l)jk + [EIP](z+1)ng(i+l)jk
+ [EIMYi—iyn By -1 BI Pl 41y Eig 1)
+ [EKM]ij(k-l)Eij(k—l) + [EKP]ij(k+l)Eij(k+l)
(2a)
jweoCE)ijuEijn
= [HIM-1yjeH -1y + [HIP)apay0H i1
+ (H I M-y Hi-0s H I Pl Hugn
+ [HE Mijg-1yHijor) + [HK Pliy iy Hiy )
(2b)
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in which
o _Em . Ha:
E=|E,| H=|H,
CH, 0 0
[CHl,+=| 0O CH, 0
0 CH.],,
CE, 0 0
[CElyjx=| 0 CE, 0
1o 0 CE.],,
[0 0 0 ]
[EIM]_1y;, = |0 0 RCE,,
0 —RCE,, 0 [
[0 0 0 ]
[EIP)( 1), = |0 0 —~RCE,,
0 RCE,, VI PP
0 0 —RCE,,
[EJM]i;—1y, = 0 0 0
|RCE., 0 0 G-k
) 0 RCE,,]
[EJ Pk = 0 0 0
|—RCE., 0 0 |anm
0 RCE,, 0]
[EKM]z](k—l) = —RCny 0 0
L 0 0 O-ij(k—l)
0 ~RCE,, 0]
[EKPl,yk+1) = | RCEye 0 0
|0 0 O-ij(k—}-l)

Upon the duality principle, the matrices in (2b) can be deduced
by replacing £ with H. In these characteristic matrices

CE.ijk = AyijnAzijrerijh

+ (1/2)[AYi(j 1)k AZi(G-1)kEri(j-1)k
+ AYi 1)k AZiGg 1) kEri(+1)k
+ Ay (k—1) D2uy (k= 1)Eray (k1)
+ AUy (e+1) D24y (k1) Erejice+1)]
+ (/DAY —1)(k-1)
X Azyg-1)(k=1)Eri(j=1)(k=1)
+ AY(-1)(k4+1) AZu(g=1) (k+1)Ere(3-1) (k+1)
+ A5 +1) (e~ 1) D2 +1) (k= 1) Eri(41) (h—1)
+ AYiG+1) 4+ 1D AZi G+ 1) (k1) Eri(G+1) (b+1)]

RCEyyk = Dzt + (1/2)[Azije—1) (Erigh/Erije~1))
+ Aziior1) (Erijk /Erij(e+1))]

RCOEy 55 = Axgjr + (1/2)[Az 1)k (erigh/erii—1)i8)
+ Az iy1)jk(Erijk/Ergirt)in)]

RCEzyuk = Ayijk + (1/2)[Ayi(j—l)k(Erijk/srz(]—l)k)
+ AYii+0)k(Erigrh/EriGi+1)k)]

RCE, ik = RCEysjk, RCEpyi = ROE,y 1,
RCE,,ijx = RCE,;ijk.

Due to the symmetry of formulation, coefficients C'Ey, i
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and CFE._,;;, can be deduced from the expression of CLisn
by a simple rotation of the principal axis .z, y, and z. For
example, CF,,,;, is obtained by replacing Ay, Az with Az,
Az, respectively, and modifying adequately the corresponding
subscripts. Coefficients C'H .1, C Hyqyr, and CH ;. can also
be deduced from CE,, i, CEy;k, and CE.;,;, by substituting
e, by u,. Finally, RCH coefficients can be obtained by
interchanging &, with . in the RCE coefficients. Only the
H-field condensed node procedure will be exposed since the
duality principle can be easily applied. To obtain a decoupled
expression described by (3) for H-field components, (2b) is
used to eliminate F-field components in (2a) which becomes

(M H o + M)y 0 H oy + IMT) G2k H g2
+ M) oy iy =+ [M I 2y Hig oy

MK Hoye2) + MKy By res2)

LT n (e Ha-1)¢-1

oo Heonorom

L )yng-nrHaeno-o

1J] z+l)(j+1)kH(t+l)(]+1

(- H o 1it-1)

(=1 0e+ 1) H 1) i(rs1)

iEiEEEE

+
+
+
+
+
+ [MIK]

+ ]

+ [MIK] (1) (k- 1>H<i+1)j(k 1)

+] ]

+1

+ [
+

[MJK 1o+ (ke ) Hag 1) (k1) = 0 3)
in which
(H, M, 0 O
A= |H,| [M/=]0 M, 0
| H. 0 0 M.
0 0 0 M, 0 0
[MI] 0 M, O MJ]=]0 0 0
0 0 MM, | 0 0 Mj
M, 0 0] 0 M, 0
[MK]=|0 M, 0| [MIJ]=|{M, 0 O
|0 0 0] 0 0 o0
[0 0 M, 0 0 0
[MIK]=|0 0 0 IMJK]= 10 0 M.
(M, 0 0 | 0 M, 0

Coefficients M, M,,. and M are related to the previously de-
fined coefficients CE, CH, RCE. RCH, and ko = w/loo-
One should notice the symmetry of (3) with respect to the
principal axis.

Next, the cells are concentrated symmetrically by applying
magnetic flux conservation relation (1d). This is performed by
deriving two relations, (4a) and (4b), from the magnetic flux
conservation between the condensed cell ijk (referred to as the
reference cell) and its six neighboring cells along the principal
axis. More precisely, cells with subscripts (i —1)jk, i(j — 1)k,
and ¢5(k — 1) are considered with the backward discretization

]
/
K g

%ii

Fig. 2. Discretization scheme for £, field component at discretepoint ¢ k.

whereas cells with subscripts (i+1)jk, 2(j+1)k, and 75 (k+1)
are taken into account with the forward discretization. The
differential volume considered to apply the flux conservation
is presented in Fig. 3, only for Hy,,, field component,
[CHr(i—k—l)JkHL(i—&-l)]k - Csz]kHvuk]
+[CH i Hyigirin — CHyyi oy

+ {OHZLj(k+1)HZij(k+l) - CqukHzUk] =0 (43)

[CHszkH.m,Jk - CH‘b(i—l)]kHz(l*l)_]’i:t
+ [CHy,Hyyr — CH, J—l)kHW(J‘l)k]
+ [CH:ZJk zigh — OH~1](k 1) zz](k—l)] =0. (4‘b)

To optimize the number of cells involved in conserving the
symmetry of this formulation, specific rules are followed
according to (4a) and (4b). These rules are related to the choice
of the reference cell. In the beginning, the reference cells (i —
1)jk and (i+ 1)jk are used to eliminate H, field components
in the first line of (3) using (4a) and (4b). Next, the reference
cells i(j — 1)k and i(j + 1)k are considered to eliminate H,
field components in the second line of (3). Finally, H, field
components in the third line of (3) are removed by considering
the reference cells ij(k — 1) and 4j(k + 1). This process
leads to a 3D condensed node (Fig. 4a) whose characteristic
relation is not given here for simplicity. Nevertheless, it should
be mentioned that it provides solutions in terms of field
components H,. H,, H,. Spurious modes are effectively
eliminated under the consideration of the flux conservation
relations. This point, which solves for six field components,
has not been mentioned in other general formulations [19].
Indeed, the flux conservation relations state that there is no
net flux lines arising from any static source in the medium.
Generally speaking, these spurious modes arise from the fact
that the divergence of field vectors is not taken into account
since a vector, mathematically, is completely defined if its
curl and divergence are simultaneously satisfied. The flux
conservation relations are in fact an integral form of the so-
called zero divergence relations commonly used to suppress
spurious modes when the differential form of Maxwell’s
equations are considered. More details are given in [I5] with
regard to this subject.

For 2D analysis, a simplified formulation is developed in
terms of transverse fields H, and H, by eliminating . field
components in the first two lines of (3). The final expression
characterizing the 2D condensed node (Fig. 4(b)) is obtained
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by using (4a) and (4b) with the reference cells (i — 1)jk,
(i + 1)jk, i(j — 1)k, and #(j + 1)k, such as
[PlijeHoik + [Pliiayje B i_aye + [Plii+2)inHirajn

+ [Pli-ayHig -2 + [Pl sy Hig 12

+ [Plije—2yHiy(i—2) + [P]ij(k+2)ﬁi](k+2)

+[@le-nG-nrHe-1 -1

+ Q-1 G+ 1y g4

+ QL+ -vrH 1o -1k

+[@Q]

Qi+ 1yG+1yrH 1) 1)8 = 0 ()
where
"_ Hx _ P;z: 0 . 0 Qy
i) w=[G 2] w@=le %]

The matrix [P] describes field components H, and H,,
whereas [Q] determines the coupling between these two field
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Fig. 5. Image principle applied to cells across the boundaries. (a) Electric
wall. (b) Magnetic wall.
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components. Coefficients Py, Py, Q., and @, are related to
the previously defined coefficients CE, RCE, CH, RCH,
and kg = w+/Ho€g. Similar expressions can be easily deduced
for the F field 2D condensed node.

III. BOUNDARY CONDITIONS

Considering the field configuration of the condensed cel!
used to form the condensed node, an image concept is in-
troduced to model boundary conditions. This concept is de-
rived from the image theory by making an analogy be-
tween field components and electric or magnetic sources. Each
field component, defined as an electric or a magnetic punc-
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TABLE I
DISPERSION CHARACTERISTICS FOR TE19 MODE OF A
WAVEGUIDE FILLED wiTH A Lossy MEDIUM (&, = 1.5, tané = 0.1)
AND ERRORS COMPARED TO EXACT VALUES

Normalized Normalized Propagation  Error Compared to _ Error Compared 1o

Frequency Characteristics Exact Values [21] Exact Values from [19]

koa B, oy ABz (%) Aotz (%) ABz (%) A0 (%)

0.1 0025927 -2.892107 0014 -0036 008 -012

0.2 0076074 -0.985854 0063 -0065 025 -025

03 0.646079 -0 116086 0066 -0065 029 -026

04 0.943291 -0079511 0018 -0.016 007 007

05 1053803 -0071173 0010 -0007 004 -003

06 1109313 -0 067612 0007 -0.003 002 002

T T T Y T T T

0.98 1
0.96 p =15, 30, 60, 100 R

0.92r 1
0.91 4
—_—
0.88- B
exact value=0 8633
0.86 . . . . . . .
10 15 20 25 30 35 40
N

Fig. 7. Convergence behavior of LSE g; mode with b = 1.016 cm,

afb = 2.25 and &1 = 2.536.

tual source, is enclosed by the corresponding cell cubic box
(Aziik, AYisn, Az,n ). The differential planes Awx; Az, p
and Ay,;k Az, act like reflecting planes for the transverse
field components at discrete point ijk. Fig. 5 shows how the
cells across the transverse boundaries are taken into account
through the image theory. The boundary cells with their
images seem to compress the boundaries, thus providing the
avoidance of dealing directly with edge singularities. It can
be shown that the proposed image principle is somewhat
equivalent to Dirichlet and Neumann boundary conditions, and
works for any size of the elementary cell. If we consider
an electric wall, to name an example, the image principle
is equivalent to Neumann boundary conditions for tangential
H and normal F fields. However, normal 1 and tangential
E fields are subject to Dirichlet boundary conditions by
considering the averaging fields on the wall. The dual situation
takes place by considering a magnetic wall. Boundary cells at
right corners are also taken into account through the image
principle. It must be noticed that the image principle is
only applied at the boundaries; continuity conditions at the
interfaces involving different dielectrics have been already
considered in the characteristic formulation.

In the following, the 2D analysis in terms of the transverse
field components is performed by considering the interaction
between all nodes defined in the transverse plane. A transverse
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(b)

Fig. 8. Convergence behavior of hybrid modes at normalized frequency
V' = akov/er1 —erg = 8 with &r1 = 2.1. (a) Ez11 and E,21. (b) Eylz
and Eyo5.

plane is defined as a slice of the cross section of a guiding
structure with a thickness of Az in the propagation direc-
tion. The whole procedure leads to a standard deterministic
eigenvalue problem (6) with a real or complex sparse diagonal
matrix for lossless or lossy structures, respectively. Propaga-
tion characteristics are obtained by calculating eigenvalues and
eigenvectors of (6).

([A]) = ADH =0 (6)
where
A =2cosh (27, - Az) (eigenvalue)
Yy =y + - (complex propagation constant)
Az (mesh size in the propagation
direction)
I (identity matrix).
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The IMSL. MATH/LIBRARY package based on EISPACK
routines is used to solve the eigenvalue problem. All pos-
sible symmetries are exploited to reduce memory size and
computation time.

IV. DYNAMIC MESH PROFILES

Graded mesh is exploited in order to get a better con-
vergence behavior without an excessive discretization. Cori-
putation time and memory size can be therefore optimized.
This is done by generating discrete points through the use
of some profile functions. SIN (X) and [1 — COS (X)) (Fig.
6) are chosen as the profile functions providing a smooth
variation of mesh size. The range of X is made variable by
defining an offset angle X F' in order to avoid, if necessary,
the saturated zone of the profile functions. In addition, it is

43
1.55 T T =T T =
N 80
1.5} §\\\\\\ 1
Lo
1.45} M 1
a2
1.4} EX11,EYM
31.35- _‘ 1
- 1.3F b
@ Ev21
1.25/ % —  Exi2 1
T EX21
1.2} /\ EY12 .
1.15r d
11l /\M i
, EX22,EY22

§ 10 15 20
N

Fig. 10. Convergence of propagation constants of the first eight hybrid modes
at normalized frequency V' == ako+/€r1 — €rp = 8 with €1 = 2.1.

T T

3

o

hk0

Fig. 11. Dispersion characteristics of an insulated image guide at
normalized frequency V' = hko with kg = w,/Ho€s, €r1 = 3.8,
erg = 1.5,W/h = 2.25,d/h = 0.5, a/h = 13.5, b/h = 8.0.

observed that a particular value of X F may bring about the
optimal convergence. This is important to minimize possible
resonance between physical and mesh grid modes [19]. Three
types of profiles functions are defined as

A-[SCL-SIN(X)], 0<X < (r/2)—XF TYPE I
A-[1-SCL-COS(X + XF)], 0<X < (n/2)-XF

: TYPE IT
A-(1/2)-[1-SCL-COS(X + XF)],0< X <n—2-XF
TYPE 111
where
SCL ! (scale factor)

T SIN((r/2) - XF)
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A:  physical dimension to be discretized.
N: number of condensed cells required along the
physical dimension A.

Quasi equidistant meshes can be generated by choosing a large
value for the offset angle X F within the range [0, 7 /2].

V. NUMERICAL RESULTS

A rectangular waveguide of width = 10a and height = 5a,
filled with a lossy medium, is studied with equidistant meshes.
Dispersion characteristics are presented in Table I for the
fundamental mode TE;( at various normalized frequencies kga
where kg = w,/pi0gg. The mesh dimensions (NX,NY) =

VA """ :
s
\\\»//””//W//’ :
\erry

= —
— =

SR

054"

POWER FLUX DENSITY
o
1

4

b (mm)

Fig. 13. Power-flux density related to modal fields E,11 and H,11.

(40,20) are considered where NX and NY represent the
number of condensed cells along z- and y-axis, respectively.
These results demonstrate the accuracy of this new formulation
compared to previous works based on Yee’s cell [19] and the
exact values [21]. The cutoff frequency is located between
normalized frequencies 0.2 and 0.3, where a transition from
attenuating waves to propagation is observed. The maximum
error obtained around the cutoff frequency can be explained
by the resonance between physical mode and mesh grid mode
[19]. This maximum error, using this formulation over the
frequency range of interest is less than 0.07% compared to
0.3% obtained by other formulations [19].

Results for a partially filled waveguide is presented in Fig.
7, where N = NX = NY and p = (A/Az). A better
convergence is achieved as Az becomes smaller compared to
the guided wavelength. This can be explained by the fact that
the ideal discretization condition with Az = 0 is approached.
The results show a good agreement with the exact values [21].

The convergence behavior of the fundamental and higher
order modes for a dielectric waveguide is illustrated in
Fig. 8. Field profiles of Ey11 and FE 22 are plotted in
Fig. 9. It demonstrates loss advantages using a dielectric
waveguide since the field is mainly bounded into the
dielectric region. Tangential F fields are continuous at
the dielectric interfaces in contrast to the discontinuity of
normal counterparts. This is consistent with the continuity
conditions. Results for a similar dielectric waveguide
are shown in Fig. 10 and successfully compared with
[18]. The convergence behavior of the first eight hybrid
modes (E,11,FE,;12, E,21, E,22,E,11, E,12, E, 21, E,22)
is shown for Az = A/50.

An insulated image guide is also calculated using a different
dynamic mesh profile. It is observed that sharp fields at
dielectric edges are well determined without a special mesh re-
finement, resulting in a substantial gain in calculation time and
memory size. This is attributed to the use of the condensed cel/
and the central difference scheme. Dispersion characteristics of
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hybrid modes E.11, E,21, F,11, and E,21 are presented in
Fig. 11 where a mesh size of (NX, NY') = (12,15) is used.
These results agree well with [16]. The modal fields E, 11
and I;11 are presented in Fig. 12 at hko = 1.2. Tangential
H fields vanish on the sidewalls and ohmic losses are then
minimized. The modal field E,11 compares well with [12].
An identical propagation constant is found for modal fields
E;11 and H,11 at hky = 1.3. The related power flux density
(8 = E;11 x H,11*) is plotted in Fig. 13 showing maximum
power around the inner dielectrics.

VI. CONCLUSION

A new finite-difference frequency-domain formulation that
introduces 3D and 2D condensed nodes is presented. These
condensed nodes are derived from condensed cells and the
integral form of Maxwell’s equations. Spurious modes. are sup-
pressed by reinforcing the electric and magnetic flux conserva-
tion between neighboring cells. The image theory is exploited
to model boundary conditions. The derived 2D condensed node
is used to study a variety of waveguiding structures with
the deterministic standard eigenvalue solution. Propagation
characteristics and modal field profiles are obtained with good
accuracy compared to other works. Appropriate dynamic mesh
profiles are used to alleviate problems related to the resonance
between physical modes and mesh grid modes, while CPU
time and memory size are optimized.
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