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A Finite-Difference Frequency-Domain Method that

Introduces Condensed Nodes and Image Principle
Messan M. Afande, Ke W%, Senior Member, IEEE, Marcel Giroux,

and Renato G. Bosisio, Senior kfember, IEEE

Abstract-A new finite-difference frequency-domain formula-

tion is derived from the integral form of Maxwell’s equations.
Condensed cubic cell and 3D node are proposed thereby elim-
inating field discontinuity in the discrete space domain. Deter-
ministic solutions using a reduced 2D condensed node are also

presented for standard eigenvalue problems. This method is
free from spurious modes by reinforcing electric and magnetic

flux conservation among neighboring cells. An image concept

is introduced to model field boundaries. Numerical results are
presented for the complex propagation constant to demonstrate

convergence behavior and accuracy of the proposed approach.

Modal field profiles of various guided modes are shown for
dielectric waveguides.

I. INTRODUCTION

w

AVEGUIDING structures have been always essential

in microwave and optical components as well as power

transfer for heating processes. Accurate analyses of these com-

plex structures usually require field-theoretical and numerical

methods in either frequency or time domain [1].

The finite-difference time-domain method (FDTD) [2]-[8],

based on the differential form of Maxwell’s equations in time

domain, has been intensively used to study various types

of waveguiding structures. Also. the TLM method [9]–[ 12]

has been developed in both time and frequency domains.

Time-domain methods are implemented in an iterative process

following the time evolution, initiated via an excitation vector.

Frequency-domain analysis remains attractive due to the

fact that boundary conditions are easily handled accurately,

and accurate hybrid mode information can be determined

without resort to expensive calculations. Nevertheless, some

frequency-domain methods such as mode-matching method

[13] and method of lines [20] suffer from an iterative search for

roots of the characteristic determinant. The application of these

approaches requires some degree of symmetry or regularity

of structure. The finite-difference frequency-domain (FDFD)

method, being simple in mesh generation, has been devel-

oped in various forms including Maxwell’s integral equations

[14] -[19] for deterministic solutions.

Previous works on the FDTD method [2]–[7] and the FDFD

method [19] are based on Yee’s cell (Fig. 1(a)) characterized

by spatially separated six field components. This artificial
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Fig. 1. (a) Yee’s cell. (b) Condensed cell.

space-domain field discontinuity may lead to errors at bound-

aries and interfaces. This may also affect numerical accuracy

and causes difficulty in handling multilayer structure in which

the thickness ratio could be significant. To our knowledge,

there is no report of a condensed finite-difference node derived

directly in frequency domain.

In this work, unified 3D and 2D condensed nodes are

derived from the integral form of Maxwell’s equations. A

condensed cell is considered leading to a better representation

of field parameters such as Poynting vector. Electric and

magnetic flux conservation between neighboring cells are

imposed to eliminate spurious modes. In contrast to the

conventional way in handling boundary conditions, an image

concept is proposed to model boundaries and is successfully

used in this work. In addition, this concept leads to the

avoidance of dealing directly with edge singularities since

field components are not considered on the boundaries. The

duality principle can be easily applied to deduce directly E
field condensed node’s expressions by knowing those of H
field condensed node, and vice versa. An eigenvalue problem

is then derived by expressing the interaction between all nodes

involving the whole structure and the boundaries. Propagation

characteristics and modal field profiles are obtained deterrnin-

istically. Numerical results are presented, thus demonstrating

the efficiency of the proposed condensed node.

001 8-9480/95$04.00 0 1995 IEEE



AFANDE et al.: A FINITEDIFFERENCE FREQUENCY-DOMAIN METHOD 839

II. THEORY in which

The integral form of Maxwell’s equations (la)-( ld) in

source-free region is considered. The permittivity & and the

permeability p are complex to account for electric and mag-

netic dynamic losses as well as electric static losses.

‘=’o[’’-’+(ii)li)l““’r
p = /L”(p’– jp”).

(la)

“E]‘“la
[
c;. o 0

[cH],jk= O CHY O
00 1CHZ ~Jk

The condensed cell (Fig. l(b)), associated with a discrete

point ijk, is characterized by the six field components (Ezij,k,

EYi3k, Ezij~, HziJ/t, Huijk, Hzijk ), the medium constitutive

parameters (E.ijk, P.ijk ) and the mesh grid (Azij~, Agijk,

Azijk).

The condensed node is derived in two steps. At first,

relations (1a) and (lb) are used to express the field interacticm

between the condensed cell at point ijk and its neighboring

cells. The discretization scheme is shown in Fig. 2 for Ezta,~
field component at discrete point ijk; discretization scheme

for Hxijk field component is directly deduced from Fig. 2

by substituting E and H with H and E, respectively. l[n

the following, similar schemes for other field components

can be simply deduced by performing an appropriate rota-

tion of the principal axis. To improve the accuracy of the

proposed algorithm, a discretization scheme similar to the

central difference is used by extending the tangential electric

or magnetic field and the normal electric or magnetic flux

density to the immediate interconnected cells. This is done

by applying continuity conditions of the tangential electric

or magnetic field and the normal electric or magnetic flux

density at a source free interface. Six coupled equations are

then obtained in matrix form as follows:
.

.- ~W#o [cff]~jkH~jk

= [EIM](i-,)jk~(i-qjk + [E~~](t+q,k~(i+qjk

+ [~~~]i(J–l)k~i(3 –l)k[~~~]i(j+l) kEi(j+l)k
. +

+ [EKM]ij(k–l)Eij( k-l) + [E~~]ij(k+l)Eij( k+l)

(2a)
.

~WEo [CE] ijk Ei.jk

= [~~~](i-l)jk~(t-l)jk + [H~~](i+l)jkfl(i+l)jk
.

+ [H~~];(j–l)kHi(j–l) k[~~~]z(j+l)kH, (j+l)k
+

+ [H~~]ij(k–l)&j(k-1) -i_ [H~~]ij(k+l)Hij(k+].)

(213)

[

00 0
[E1p](z+l)jk = O 0 –RCEYZ

O RCEZY o 1(i+l)jk

[

o 0 –RCEZZ

[EJkf]i(j-qk = RCOE O 0
Z.z o 0 1i(j–l)k

[

o 0 RCEZZ
[EJp]i(j+qk = _R:E 0 0

Zz 00 1Z(j+l)k

[

o RCEZY O

[EKM]ij(k-1) = -RCEY. O 0

0 0 10 ij(k_l)

[

o –RCEZY O

[EK1’]tj(k+l) = RCoEYz O 0
0 10 ~j(k+l)

Upon the duality principle, the matrices in (2b) can be deduced

by replacing E with H. In these characteristic matrices

cExijk = AyijkA~ijk~rijk

+ (1/2) [Ayi(j–l)kA~i(j–l)k~ri(j–l)k
+ Ayi(j+l)~A~i(j+ l)k~ri(j+l)k

+ Ay,j(k–l)A~,j(k–l) &,tj(k–l)
+ Ay,j(k+l)A~,j(k+l):.,j(k+l)]
+ (1/4) [AYi(j–1)(~–1)

x AZZ(j–l)(~–l)Eri(j–l)(~–l)
+ Ay.(j–l)(k+l)A~, (3-l)(k+l)Er,(j-l)(k+l)
+ ~Yt(j+l)(k–l)A~i(j+ l)(k–l)Eri($+l) (k-l)

+ A~i(j+l)(k+l)~.Zi(J+ l)(k+l)Eri(j+l) (k+l)]

RcEzzt,k = &tjk t (1/2) [A~ij(k-1) (&r,3k/Erij(k-1))

+ ~~ij(k+l)(&rijk/~rij( k+l))]

R6’EYJijk = kijk + (1/2) [A~(i-l)jk(Erijk/Er(i-l) ~k)

+ A$(i+l)jk(&rijk /&r(i+l)jk)]

RCEzYtjk = AVijk + (1/2) [AYi(j-l)k(&rijk/ert(J-l)k)

+ AYi(j+l)k(&rijk/&ri(j+ l)k)]

RCEzzijk = RCEYzzjk, RcEzYijk = RcEzYLjk ,

RcE.yzijk = RcExzijk.

Due to the symmetry of formulation, coefficients CEY,jk
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and CEZ,J ~ can be deduced from the expression of CEzi2 k
by a simple rotation of the principal axis .r, y, and z. For

example, C’EY,l ~ is obtained by replacing A.y, AZ with Az,

Ax, respectively, and modifying adequately the corresponding

subscripts. Coefficients CHx,lk, CHY,Jk, and CHz,lk can also

be deduced from CEzL1k, cEviJk, and CEzilh by substituting

E, by p.. Finally, RCH coefficients can be obtained by

interchanging c. with /Lr in the RCE coefficients. Only the

H-field condensed node procedure will be exposed since the

duality principle can be easily applied. To obtain a decoupled

expression described by (3) for H-field components, (2b) is

used to eliminate E-field components in (2a) which becomes

[fil],j@,J~ + [fif~](,-2)J~~(,-2)J~ + [“~](,+2),kfi(, +2),k
.

+ [A~{I]z(3_2)ktii(J _2)k + [MJ]t(3+2)@i(J+2)~

+ [A’~~]ij(k-2)~z j(k-2) + [N~K]t](k+2)H~3 (k+2)

+ [NII.l](t–l)(,j–l) kfi(t-l)(j-l)k

+ [kfIJl(L–l)(j+l) k~(L–l)(J+l)k

+ [LIJJ](i+l)(j–l) kH(z+l)(~–l)k

+ [mIIJ](,+l)(3+I) ~H(i+l)()+I)~

+ [AfIK](t-l)J(~- l) H(z-l)j(~-l)

+ [NIIK](, –L)j(~+l)H(,–I) j(~+I)

+ [Af~~l(i+l)j(~-I) ~(i+l)j(k-1)

+ [NfIR-] (,+I)J(K+I)H(,+l)J(~+l)

+ [fi~~~’]i(j-l)( k-l) fi’(j-l)(k-l)

+ [flf.J~],(J-I)( k+ I) Ht(j-l)(k+I)
+

+ [~.JK-]t(J+l)(k– l) H,(~+I)(k–l)

+ [MJIZ-],()+l)(k+ l)lZ(j+l)(k+l) = o

in which

W] ‘M]”F :Y :1

[
o

[MI] = : L!u o 1 [
A!!. o 0

[A’f.J]== o 0 0

(3)

1

‘L’K]=F{uI “f’J]=E ~ I

‘“’K]=K. ~ ‘H ‘MJA’]=} i ~1
Coefficients llfx, IWv. and NIZ are related to the previously de-

fined coefficients CE, CH, RCE, RCH, and kO = wJFjFii.

One should notice the symmetry of (3) with respect to the

principal axis.

Next, the cells are concentrated symmetrically by applying

magnetic flux conservation relation (1 d). This is performed by

deriving two relations, (4a) and (4b), from the magnetic flux

conservation between the condensed cell ijk (referred to as the

reference cell) and its six neighboring cells along the principal

axis. More precisely, cells with subscripts (i – I),jk, z(ji – l)k,

and ij (k — 1) are considered with the backward discretization

Fig. 2. Discretization scheme for Ez field component at dmcretepoint z1k.

whereas cells with subscripts (i+ l)jk, t(j + 1) k, and i,j(k + 1)

are taken into account with the forward discretization. The

differential volume considered to apply the flux conservation

is presented in Fig. 3, only for Hv,j ~ field component,

[CHX(i+l)J~H~(i+I)JA- - CHz,3~H.~,j~]

+ [CHVi(j+l)~Hyqj+l)L – CHY,J@v,i~]

+ [~ffz,~(~+l)H.~j(k+l) – CHz,JkH,7tJk] = O (4a)

[CH.zj@z,j~ – CH.(i-I)JkHZ(Z-l) JL]

+ [cHy, ]kHytJk – cHY, (J–l)kHgz(J–l)k]

+ [cHztJkH:,3k – CH,,3(k-I)HZ,,( K-1)] = o. (4b)

To optimize the number of cells involved in conserving the

symmetry of this formulation, specific rules are followed

according to (4a) and (4b). These rules are related to the choice

of the reference cell. In the beginning, the reference cells (i –

I)jkand (i+ l)jk are used to eliminate Hz field components
in the first line of (3) using (4a) and (4b). Next, the reference

cells z(j — 1 )k and i(j + l)k are considered to eliminate Hz
field components in the second line of (3). Finally, Hu field

components in the third line of (3) are removed by considering

the reference cells i:j (k – 1) and i.j (k + 1). This process

leads to a 3D condensed node (Fig. 4a) whose characteristic

relation is not given here for simplicity. Nevertheless, it should

be mentioned that it provides solutions in terms of field

components Hz, Hv, Hz. Spurious modes are effectively

eliminated under the consideration of the flux conservation

relations. This point, which solves for six field components,

has not been mentioned in other general formulations [19].

Indeed, the flux conservation relations state that there is no

net flux lines arising from any static source in the medium.

Generally speaking, these spurious modes arise from the fact

that the divergence of field vectors is not taken into account

since a vector, mathematically, is completely defined if its

curl and divergence are simultaneously satisfied. The flux

conservation relations are in fact an integral form of the so-

called zero divergence relations commonly used to suppress

spurious modes when the differential form of Maxwell’s

equations are considered. More details are given in [15] with

regard to this subject.

For 2D analysis, a simplified formulation is developed in

terms of transverse fields H. and Hv by eliminating Hz field

components in the first two lines of (3). The final expression

characterizing the 2D condensed node (Fig. 4(b)) is obtained
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Fig. 3. Discretization scheme for Hv field component considering the flux
relation.
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Fig. 4. (a) 3D condensed node. (b) 2D condensed node.

by using (4a) and (4b) with the reference cells (i – I);jk,

(i+ I)jk, i(j – I)k, and i(j + l)k, such as

[%kzjk + [~l(i-2)jkq-2)jk + [~l(i+2)jkqi+2)jk
.

+ [qi(j-2)k~i(j-2)k + [fl(j+2)k~i(j+2)k
+

+ [%(k-2)%(k-2) + [~lij(k+2)%(k+2)

+ [Q](t–l)(J–l)~~(t–l)(j–l)~
.

+ [Ql(i–I)(j+I)@(z-1)(1+1)~
+ [Q](i+I)(j–l)Jf( i+ I)(j–1)~

+ [Ql(i+l)(j+l)~fi(i+l)(3+l)~= o [5)

where

The matrix [P] describes field components Hz and Hy,

whereas [Q] determines the coupling between these two field

LYx ExiJk Hxljk
Eyijk Hyijk.

m
‘a” I t I I I

-ExiJk Hxijk
Eyljk -Hyijk

(a)

Exljk Hxljk
Eyijk Hyijk

Magnetic
Wall -

i B-

----- -

Exijk -Hxijk
-Eyijk Hyijk

(b)

Fig. 5. Image principle applied to cells across the boundaries. (a) Electric

wall. (b) Magnetic wall.
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components. Coefficients Pm, Pg, Qz, and Qv are related to

the previously defined coefficients CE, RCE, CH, RCH,
and kO = w m. Similar expressions can be easily deduced

for the E field 2D condensed node.

III. BOUNDARY CONDITIONS

Considering the field configuration of the condensed cell

used to form the condensed node, an image concept is in-

troduced to model boundary conditions. This concept is de-

rived from the image theory by making an analogy be-

tween field components and electric or magnetic sources. Each

field component, defined as an electric or a magnetic punc-
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TABLE I

DISPERSION CHARACTERISTICSFOR TE1o MODE OF A
WAVEGLJIDE FILLED WITH A LossY MEDIUM (G. = 1.5. tan 3 = O.1)

AND ERRORS COMPARED TO EXACT VALUES

NonndIzed Normaked Propagaaon Error Compared to Error Compared to

Frequency Character,mcs Exact Values [21] Erect V’IIUCSfrom [19]

koa & ~z A~z (%) Aaz (%) ADz (%) Aaz(%)

0.1
0.2
03
04
05
06

0025927
0076074
0.646079
0.943291
1053803
1109313

-2,892107
-0.985854
-0116086
-0079511
-0071173
-0067612

0014
0063
0066
0018
0.010
0007

-0036
-0065
-0065
-0.016
-0007
-0.003

008 -012
025 -025
029 -026
007 007
004 -003
002 0 (3Z
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N

Fig. 7. Convergence behavior of LS13Y01 mode with b = 1.016 cm,

a/b = 2.25 and Syl z 2.56.

tual source, is enclosed by the corresponding cell cubic box

(Arijk, Ayijk, Aztjk). The differential planes AZijkAX,jk

and Ay,jkAz,Jk act like reflecting planes for the transverse

field componentsat discrete point ijk. Fig. 5 shows how the

cells across the transverse boundaries are taken into account

through the image theory. The boundary cells with their

images seem to compress the boundaries, thus providing the

avoidance of dealing directly with edge singularities. It can

be shown that the proposed image principle is somewhat

equivalent to Dirichlet and Neumann boundary conditions, and

works for any size of the elementary cell. If we consider

an electric wall, to name an example, the image principle

is equivalent to Neumann boundary conditions for tangential

If and normal E fields. However, normal H and tangential

E fields are subject to Dirichlet boundary conditions by

considering the averaging fields on the wall. The dual situation

takes place by considering a magnetic wall. Bounda~ cells at

right corners are also taken into account through the image

principle. It must be noticed that the image principle is

only applied at the boundaries; continuity conditions at the

interfaces involving different dielectrics have been already

considered in the characteristic formulation.

In the following, the 2D analysis in terms of the transverse

field components is performed by considering the interaction

between all nodes defined in the transverse plane. A transverse

1 P=15, 25, 35, 50

1.4

Eo

aJ2

o

5 ,
J-

EX11
u
m

‘21——————
I
4 6 8 10 12 14

N

(a)

I
&o

1.15 P=l 5, 25, 35, 50

~~

1.1
t

‘$-===
EY12

EY22

o,ss~
4 6 8 10 12 14

N

(b)

Fig. 8. Convergence behavior of hybrid modes at normalized frequency
t- = ako~~,l – C,O = S with S, I = 2.1. (a) ~~11 and E~z1. (b) ~yIZ
and EYZZ.

plane is defined as a slice of the cross section of a guiding

structure with a thickness of AZ in the propagation direc-

tion. The whole procedure leads to a standard deterministic

eigenvalue problem (6) with a real or complex sparse diagonal

matrix for lossless or lossy structures, respectively. Propaga-

tion characteristics are obtained by calculating eigenvalues and

eigenvectors of (6).

([A]) - M)ti = O (6)

where

~ = 2 cosh (27Z . Az)

‘y. = a. + j/3.
Az

I

(eigenvalue)

(complex propagation constant)

(mesh size in the propagation

direction)

(identity matrix).
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Fig. 9. Field profiles at normalized frequency V = ako <~–~- = 8

with E, I = 2.1. (a) Ev 11 mode. (b) Ez 22 mode.

The IMSL MATWLIBRARY package based on EISPACK

routines is used to solve the eigenvalue problem. All pos-

sible symmetries are exploited to reduce memory size and

computation time.

IV. DYNAMIC MESH PROFILES

Graded mesh is exploited in order to get a better con-

vergence behavior without an excessive discretization. Com-

putation time and memory size can be therefore optimized.
This is done by generating discrete points through the use

of some profile functions. SIN (X) and [1 – COS (X)] (Fig.

6) are chosen as the profile functions providing a smooth

variation of mesh size. The range of X is made variable by

defining an offset angle XF in order to avoid, if necessa~,

the saturated zone of the mofile functions. In addition, it is

“55~ ‘ 1
1.5 -
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1.4 -

~ 1.35 -

i~ 1.3 -

m

1.25 -
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N

Fig. 10. Convergence of propagation constants of the first eight hybrid modes

at normalized frequency V ❑ dco {~ = 8 with e, I = 2.1.
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Fig. 11. Dispersion characteristics of an insulated image guide at
normalized frequency V = hko with kO = u m, GI = 3.8,

.C,Z = 1.5, W/k = 2.25, d/h = 0.5, afh = 13.5, b/h = 8.0.

observed that a particular value of XF may bring about the

optimal convergence. This is important to minimize possible

resonance between physical and mesh grid modes [19]. Three

types of profiles functions are defined as

A . [SCL . SIN(X)], (I< X < (7r/2) – XF TYPE I

A . [1 – SCL . COS (X + XF)], O S X < (7r/2) – XF

TYPE H

A.(1/2) .[l– SCLCOS(X+XF’)],0 <X< W–2XF

TYPE HI

1

‘CL = SIN ((7r/2) – X~ ‘scale ‘actor)
.
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Fig. 12. Field profiles. (a) Hz 11 mode. (b) Ey 11 mode

~=i(7/2)-x F

N’
~=(),1, . . ..N TYPE I, II

T—2. XF
X=i. N , i= 0,1, . . ..N TYPE III

A: physical dimension to be discretized.

N: number of condensed cells required along the

physical dimension A.

Quasi equidistant meshes can be generated by choosing a large

value for the offset angle XF within the range [0, 7r/2].

V. NUMERICAL RESULTS

A rectangular waveguide of width = 10a and height = 5a,

filled with a lossy medium, is studied with equidistant meshes.

Dispersion characteristics are presented in Table I for the

fundamental mode TEIO at various normalized frequencies k. a

where k. = w-. The mesh dimensions (NX, NY) =

2 ~’-o a (mm)

b (mm)

Fig. 13. Power-flux density related to modal fields E. 11 and HY 11

(40, 20) are considered where NX and NY represent the

number of condensed cells along x- and y-axis, respectively.

These results demonstrate the accuracy of this new formulation

compared to previous works based on Yee’s cell [19] and the

exact values [21 ]. The cutoff frequency is located between

normalized frequencies 0.2 and 0.3, where a transition from

attenuating waves to propagation is observed. The maximum

error obtained around the cutoff frequency can be explained

by the resonance between physical mode and mesh grid mode

[19]. This maximum error, using this formulation over the

frequency range of interest is less than 0.07% compared to

0.3% obtained by other formulations [19].

Results for a partially filled waveguide is presented in Fig.

7, where N = NX = NY and p = (A/Az). A better

convergence is achieved as Az becomes smaller compared to

the guided wavelength. This can be explained by the fact that

the ideal discretization condition with Az = O is approached.

The results show a good agreement with the exact values [21].

The convergence behavior of the fundamental and higher

order modes for a dielectric waveguide is illustrated in

Fig. 8. Field profiles of EV 11 and EZ 22 are plotted in

Fig. 9. It demonstrates loss advantages using a dielectric

waveguide since the field is mainly bounded into the

dielectric region. Tangential E fields are continuous at

the dielectric interfaces in contrast to the discontinuity of

normal counterparts. This is consistent with the continuity

conditions. Results for a similar dielectric waveguide

are shown in Fig. 10 and successfully compared with

[18]. The convergence behavior of the first eight hybrid

modes (EZ1l, EZ12, EZ21, EZ22, EV1l, EY12, EV21, EV22)

is shown for Az = A/50.

An insulated image guide is also calculated using a different

dynamic mesh profile. It is observed that sharp fields at

dielectric edges are well determined without a special mesh re-

finement, resulting in a substantial gain in calculation time and

memory size. This is attributed to the use of the condensed cell

and the central difference scheme. Dispersion characteristics of
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hybrid modes E. 11, EZ21, Ey 11, and EY21 are presented in

Fig. 11 where a mesh size of (NX, NY) = (12, 15) is used.

These results agree well with [16]. The modal fields Ev 11

and Hz 11 are presented in Fig. 12 at Mco = 1.2. Tangential

H fields vanish on the sidewalls and ohmic losses are then

minimized. The modal field Ev 11 compares well with [12].

An identical propagation constant is found for modal fields

Ez 11 and Hv 11 at hko = 1.3. The related power flux density

(S= Ez 11 x Hv 11*) is plotted in Fig. 13 showing maximum

power around the inner dielectrics.

VI. CONCLUSION

A new finite-difference frequency-domain formulation that

introduces 3D and 2D condensed nodes is presented. These

condensed nodes are derived from condensed cells and the

integral form of Maxwell’s equations. Spurious modes are sup-

pressed by reinforcing the electric and magnetic flux conserva-

tion between neighboring cells. The image theory is exploited

to model boundary conditions. The derived 2D condensed node

is used to study a variety of waveguiding structures with

the deterministic standard eigenvalue solution. Propagation

characteristics and modal field profiles are obtained with good

accuracy compared to other works. Appropriate dynamic mesh

profiles are used to alleviate problems related to the resonance

between physical modes and mesh grid modes, while CPU

time and memory size are optimized.
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